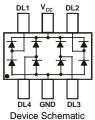


QUAD DATA LINE SCHOTTKY BUS TERMINATOR


Features

- Low Forward Voltage Drop
- Fast Switching
- Very High Density
- Ultra-Small Surface Mount Package PN Junction Guard Ring for Transient and ESD Protection
- Provide Transient Protection for High-Speed Data Lines in Accordance With: IEC61000-4-2 (ESD) 15kV (Air), 8kV (Contact) IEC61000-4-4 (EFT) 80A (tp = 5/50 ns) IEC61000-4-5 (Lightning) Class 3
- Lead Free/RoHS Compliant (Note 2)
- "Green" Device (Note 3 and 4)

Mechanical Data

- Case: SOT-363
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminals: Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe). Solderable per MIL-STD-202, Method 208
- Polarity: See Diagram
- Marking Information: See Page 2
- Ordering Information: See Page 2
- Weight: 0.006 grams (approximate)

Maximum Ratings @T_A = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitance load, derate current by 20%.				
Characteristic		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	30	V
Forward Continuous Current	(Note 1)	I _{FM}	200	mA
Non-Repetitive Peak Forward Surge Current	@ t < 1.0s	I _{FSM}	600	mA

Thermal Characteristics

Characteristic		Symbol	Value	Unit
Power Dissipation	(Note 1)	PD	200	mW
Thermal Resistance Junction to Ambient Air	(Note 1)	$R_{ heta JA}$	625	°C/W
Operating Temperature Range		TJ	-55 to +125	°C
Storage Temperature Range		T _{STG}	-65 to +125	°C

Electrical Characteristics @T_A = 25°C unless otherwise specified

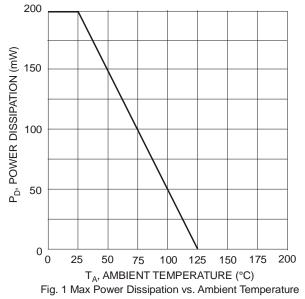
Characteristic			Symbol Min		yp Max		Test Condition
Reverse Breakdown Voltage	(Note 5)	V _{(BR)R}	30	—	_	V	I _R = 100μA
Forward Voltage		VF	_	_	280 350 450 550 1000	mV	$\begin{split} I_{F} &= 0.1 \text{mA}, \text{ tp} < 300 \mu \text{S} \\ I_{F} &= 1.0 \text{mA}, \text{ tp} < 300 \mu \text{S} \\ I_{F} &= 10 \text{mA}, \text{ tp} < 300 \mu \text{S} \\ I_{F} &= 30 \text{mA}, \text{ tp} < 300 \mu \text{S} \\ I_{F} &= 100 \text{mA}, \text{ tp} < 300 \mu \text{S} \end{split}$
Reverse Current	(Note 5)	I _R	_	_	2	μA	V _R = 25V
Total Capacitance		CT	_	10.0 6.5	_	pF	$V_R = 0, f = 1.0MH (Note 6)$ $V_R = 0, f = 1.0MH_Z (Note 7)$
Reverse Recovery Time		t _{rr}	_	_	5.0	ns	$\begin{split} I_F &= I_R = 10 \text{mA}, \\ I_{\text{rr}} &= 0.1 \text{ x } I_R, \text{ R}_L = 100 \Omega \end{split}$

Notes: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

2. No purposefully added lead.

3.

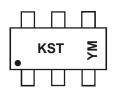
Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php. Product manufactured with Date Code UO (week 40, 2007) and newer are built with Green Molding Compound. Product manufactured prior to Date 4 Code UO are built with Non-Green Molding Compound and may contain Halogens or Sb2O3 Fire Retardants.


Short duration pulse test used to minimize self-heating effect. 5

6. At $V_R = 0V$, DL(X) to V_{CC} or GND.

7. At V_R = 0V, between Data Lines (e.g., DL1 and DL4).

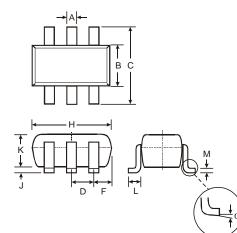
QSBT40



Ordering Information (Note 8)

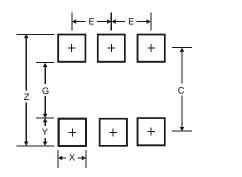
Part Number	Case	Packaging
QSBT40-7-F	SOT-363	3000/Tape & Reel

Notes: 8. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.


Marking Information

KST = Product Type Marking Code YM = Date Code Marking Y = Year ex: N = 2002 M = Month ex: 9 = September

Date Code Key												
Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Code	М	N	Р	R	S	Т	U	V	W	Х	Y	Z
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D
Code	1	2	3	4	5	6	7	8	9	0	N	D


Package Outline Dimensions

SOT-363						
Dim	Min	Max				
Α	0.10	0.30				
В	1.15	1.35				
C	2.00	2.20				
D	0.65 Nominal					
F	0.30 0.40					
H	1.80	2.20				
J		0.10				
ĸ	0.90	1.00				
L	0.25	0.40				
М	0.10	0.25				
d	0°	8°				
All Di	All Dimensions in mm					

Suggested Pad Layout

Dimensions	Value (in mm)
Z	2.5
G	1.3
Х	0.42
Y	0.6
С	1.9
E	0.65

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.